Not just OpenOCD, but just.. get it updated.
MCU-Link is a USB-HS “CMSIS-DAP” compatible debug interface, cheaply available. It has a 2x5x1.27mm cortex debug connector, a bonus usb2uart TTL on 2.54mm pins, and even has the 1.27mm 10pin cable in the little case. Supports SWO trace at ~9M they say. Excellent!
As shipped it was running a very old firmware, older than they even have in their release notes. MCU-LINK r0FF CMSIS-DAP V0.078
OpenOCD didn’t even recognise this.
NXP Offers a “MCU-Link installer for Linux” which at the time of writing was v3.128. which certainly sounds more up to date. I downloaded that, found a shell script that wanted to be run as root…. So, with less commentary, here’s how I jumped all the hoops to upgrade the MCU-Link to recent, and get it working properly…
$ sh MCU-LINK_installer_3.128.x86_64.deb.bin --noexec --target .
$ ar x MCU-LINK_installer_3.128.x86_64.deb
$ tar -xf data.tar.gz
$ cd usr/local/MCU-LINK_installer_3.128/
# Now, plug in the "firmware update" jumper and replug the dongle
# This flashes the firmware itself...
$ bin/blhost --usb 0x1fc9,0x0021 flash-image probe_firmware/MCU-LINK_CMSIS-DAP_V3_128.s19 erase 0
# and here we "configure" it, leaving it as unlocked as we can...
$ bin/blhost --usb 0x1fc9,0x0021 read-memory 0x9dc00 512 myoutdump.bin 0
$ bin/mculink_cfg myoutdump.bin --clear --no-device_vendor --no-device_name --no-board_vendor --no-board_name
$ bin/blhost --usb 0x1fc9,0x0021 flash-erase-region 0x9dc00 512
$ bin/blhost --usb 0x1fc9,0x0021 write-memory 0x9dc00 myoutdump.bin 0
Now, unplug, take off the jumper, and replug. You now have a much more standard looking USB descriptors, and running Product: MCU-LINK (r0FF) CMSIS-DAP V3.128
And… now it happily supports non-NXP parts too.
$ openocd -f interface/cmsis-dap.cfg -f target/stm32g4x.cfg
Open On-Chip Debugger 0.12.0+dev-00469-g1b4afd13f (2024-01-08-22:49)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : Using CMSIS-DAPv2 interface with VID:PID=0x1fc9:0x0143, serial=X1JALQM40K3MS
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: JTAG supported
Info : CMSIS-DAP: SWO-UART supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: Test domain timer supported
Info : CMSIS-DAP: UART via USB COM port supported
Info : CMSIS-DAP: FW Version = 2.1.1
Info : CMSIS-DAP: Serial# = X1JALQM40K3MS
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 0 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x2ba01477
Info : [stm32g4x.cpu] Cortex-M4 r0p1 processor detected
Info : [stm32g4x.cpu] target has 6 breakpoints, 4 watchpoints
Info : [stm32g4x.cpu] Examination succeed
Info : starting gdb server for stm32g4x.cpu on 3333
Info : Listening on port 3333 for gdb connections
Later, I’ll test the actual trace, just wanted to write these down while I still had it all.